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Abstract

The vast majority of reliability analyses assume that components

and system are in either of two states: functioning or failed. How-

ever, in many real life situations we are actually able to distinguish

among various "levels of performance" for both system and components.

For such situations, the existing dichotomous model is a gross over-

simplification and so models assuming degradable (multistate) systems

and components are preferable since they are closer to reality.

We present a survey of recent papers which treat the more sophis-

ticated and more realistic models in which components and systems may

assume many states ranging from perfect functioning to complete fail-

ure. Our survey updates and complements a previous survey by

El-Neweihi and Proschan (1978). Some new results are included.

-",Pry , I . -
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1. Introduction

The theory of binary coherent systems serves as a unifying foundation

for a mathematical and statistical theory of reliability. In this theory

systems and components are assumed to be in one of two states: fumctioning

or failed. In many real-life situations, however, the systems and their

components are actually capable of assuming a whole range of levels of per-

formance, varying from perfect functioning to complete failure. In order

to describe more adequately the performance of such "degradable" systems

and components, researchers felt the need to develop the theory of multi-

state coherent systems.

Until recently, little work had been done on this more general prob-

lem of multistate systems. However, a growing interest in this area is

indicated by the increasing number of research papers currently being

written on this subject. In this paper a survey is made of recent treat-

ments of multistate models performed by Barlow and Wu [21, Block and Savits

[3], [4], Borges and Rodrigues [S], El-Neweihi, Proschan and Sethuraman [6],

El-Neweihi [8], Griffith (9], Griffith and Govindarajulu [10], Natvig [13]

and Ross [15]. This survey updates and complements a previous one by
6

El-Neweihi and Proschan [7].

We now stmmarize the contents of this paper. Our formulation and

treatment are similar to that of Barlow and Proschan [1] for the binary

case. In Section 2 we present the notation and terminology used through-

out the paper. In Section 3 deterministic models of multistate systems

* are presented. For the system and for each of its components we distin-

guish asog different "lewis of performance" represented by the elements

of a totally ordered set S called the state space. The vector

al
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x = (x l , . . . , x) representing the states of the n components takes its

values in Sn , where Sn is the n- Cartesian power of S. The state of the

system is represented by a function *:S n - S of component states. Set -

theoretic and axiomatic approaches are adopted by various authors to intro-

duce a variety of classes of multistate systems. We survey the different

models and their structural properties, occasionally comparing and contrast-

ing them.

In Section 4 we investigate the probabilistic aspects of multistate

models. The random vector XE(X1,...,X n) represents the states of the n

components and the random variable #(X) the state of the system. We survey

the relationship between the stochastic performance of the system and the

stochastic performance of its components. When the exact values of system

performance probabilities are difficult to compute, bounds are provided.

Finally in Section 5 we survey dynamic aspects of degradable systems.

At time 0, the system and each of its components are at the maximal level

of performance. As time passes, the performance levels of components (and

consequently of the system) deteriorate to lower levels until finally

system level 0 (complete failure) is reached. Classes of 1-dimensional

decreasing stochastic processes generalizing known classes of life distribu-

tions are presented. Multidimensional versions of such classes suitable

for describing dependent components are surveyed. Generalized IFRA and NBU

closure theorers are presented.

Results from the literature sumarized in this survey have been cred-

ited to the researcher(s) responsible. However, there are some results

in the present paper which are new and due to us. For such results we do

not specify authorship.
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We have used the term "degradable" as synonomous with "multistate"

Our purpose in introducing the term is to help bridge the gap between the

reliability theorist and the reliability practitioner. The theorist uses

"multistate", the practitioner uses "degradable". We believe strongly that

future growth and application of a rich multistate theory and its practical

application to degradable systems will be a consequence of continued inter-

action between theorist and practitioner. A good example of practical

interest is contained in Govindarajulu and Griffith [10].

2. Notation, Definitions, and Terminology.

The vector x = (x 1 ... ,xn ) denotes the vector of states of components

1,...,n.

C = (1,...,n) denotes the set of component indices.

(Jix) -- (Xl,...,XilJXi4l,...,Xn), where j = 0,1,...,M.

1.ix) ( xl,...,Xil.,xi+l,..,n.

- C(,.. .,I).

y <5 x means that Y, s xi, i = 1,...,n.

y< x means that y1 
< xi, i = 1,...,n, and y, < xi for some i.

a 0 (o,al,...,I) is a probability vector means that a. z 0,
M

j-o,...,M and cI a.
J-0 st

For probability vectors a and a', a < a' means that

M M[a. a'. , t =o,1, ... ,M.

jjLts j=L

A subset U cR is an pper set if xc A and x < y imply that y c A.

A subset L c R is a lower set if x c L and y x imply y EL.
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x v y a max(xy).
: x v -= (xVYID,"-,xvyn

.1 V Y- (Xl ~**DnY n

X A y =- min(xy).

X A y 3 (XlAyl,...,XnAyn).

"Increasing' is used in place of "nondecreasing" and "decreasing" is

used in place of "nonincreasing". When we say f(xl,...,x nx) is increasing

we mean f is increasing in each argument.

Given a univariate distribution F, its complement 1-F is denoted by F.

thGiven a set S, S denotes its n- Cartesian power. R denotes the

set of real numbers.

3. Deterministic Models for Multistate Systems.

First let us recall the definition of a binary coherent system of n

components. The vector x = (x,...,x ) represents the states of the n

components where xi is either 0 or 1, i = 1,...,n. The state of the

system is determined by a structure function :(0,1) n {0,I}. The

structure function f satisfies certain conditions that represent

intuitively reasonable properties of systems encountered in practice. The

following two conditions are required for a binary system to be a coherent

structure [1,Def.2.1,p.6J:

(i) The function *(x) is increasing.

(ii) For each i there exists a vector (.i,x) such that

*(lisx) > *(Oix). This means that the function f is not constant in

any of its arguments.

Condition (i) expresses the reasonable assumption that improving

component performance should not degrade system performance. Condition
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(U.) asserts that each component is relevant to system performance, thus

eliminating from consideration components which have no effect on system

performance. It follows from (i) and (ii) that

(iii) I() = 1 and *(O) = 0.

The class of binary coherent structures is precisely the class of all

structure functions f that have the following representation:

(x) = max win xi  for all x c 10,I)n,

Isj Sr iCP.

where P, P are nonempty subsets of (1,...,n} such that

r
UP {1,...,n) and Pi A P. for isj. The sets "'l'"'Pr are called

the min path sets of the structure function 0 (a dual representation in

terms of "min cut" sets is also possible). Thus the same class of binary

coherent structures can be obtained via either the axiomatic approach or

the set-theoretic approach.

The binary model however, is an oversimplification in describing a

situation in which both the system and its components are capable of

assuming a whole range of levels of performance, varying from perfect

functioning to complete failure. For such a case, a larger state space S

is needed to describe the situation more adequately. Also useful definitions

for multistate structure functions must be provided to relate the performance

of the system to the performance of its components. A theory of multistate

structures can then serve as a unifying foundation for a mathematical and

statistical theory of reliability in the multistate case. Most of the

earlier treatments dealing with multistate situations investigate only very

special applications without trying to build a general framework for a

multistate theory. (See for example Hirsch et al (11] and Postelnicu [14].)
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More recent and more comprehensive research on multistate systems is

performed by Barlow and Wu [2], Block and Savits [4], Borges and Rodrigues

[5], El-Neweihi, Proschan, and Sethuraman [6] (hereafter referred to as

EPS [6]), El-Neweihi and Proschan (7], Griffith (9], Natvig [13], and Ross

[15]. Two approaches are adopted by these authors to introduce their

classes of multistate structures: the set-theoretic approach and the

axiomatic approach.

The set-theoretic approach is followed by Barlow and Wu [2] who intro-

duce a class of multistate structure functions based on the concept of

min path (min cut) sets of binary coherent systems. Consider a system of

n components. Assume that the state space for each of the components as

well as for the system is the set S={O,l,...,M} where 0 denotes the failed

state and M denotes the perfect state. Let Pl'"".'Pr be nonempty subsets

r
cf C such that U P. a C and P. A P., i j j.

The structure function *:S - ;s S is defined by

(x) = max minx i  , (3.1)
lj!r izPj

where x e represents the states of components l,2,...,n. Let *
be the binary coherent structure function whose min path sets are

Pl""Pr - The multistate coherent structure * specified in (3.1) can

then be expressed in terms of * as follows: For each i =

let

I if xi a j

10 O.W.
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and let aj (YlJ,...Y nj). j = 0,1...,M. It is easy to see that

#(x) 2 j iff #"(y 1, and

M
*(x) = ,(yj). (3.2)

jul

Thus the class of multistate coherent structures specified by Barlow

and Wu (21 (hereafter referred to as the BW class) is very closely related

to the class of binary coherent structures. Exploiting this relationship

makes it easy to extend results from the binary class to the BW class.

The axiomatic approach has proven to be more fertile in the multistate

case. Axioms (i), (ii), and (iii) for the binary coherent structures can

be generalized in a number of different ways each leading to a distinct

class of multistate structures. We first survey the treatments in which

the state space S is taken to be the set (O,1,...,M), representing M+l

levels of performance ranging from complete failure (0) to perfect

functioning (M). The first class of multistate systems of this type is

presented in EPS [6], where the structure function *:Sn - S is assumed

to satisfy three conditions.

3.1 Definition. A system of n components is said to be a multistate

coherent system (MCS) if its structure function f satisfies:

(i)' f is increasing.

(ii)' For level j and component i, there exists a vector

(-i,x) such that *(ji,A) v j while *(ti,x) A j for 1 0 j, i = 1,...,n

and =0,...,M.

(iii)' *(j) a j for j a 0,1,...,M.

Note that conditions (i)' and (ii)' generalize conditions (i) and (ii) in
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the binary case. Condition (iii is automatically satisfied in the binary

case, but is not implied by (i)* and (iir in the present multistate case.

The class of MS's is referred to hereafter as the BPS class. It can be

easily shown that the EPS class contains the BW class. In fact the EPS

class is a much larger class. For instance, for a two component system,

the BW class consists of two distinct systems only, namely the parallel

system and the series system, regardless of the cardinality of S. However,

for M=2 there are 12 structures in the EPS class.

In Definition 3.1, condition (ii) is referred to as the relevance

condition for the components of the system. This leads to a type of

coherence which is called by Griffith [9] strong coherence. The following

two successively weaker types of relevancy are introduced by Griffith [9]:

(ii)" For any component i and state j 2 1, there exists a vector

(-,x) such that <()i,!) <

(ii)"" For any component i, there exists a vector (.,,D such that

*(o.,x <

We now define the two new classes of multistate structures introduced

by Griffith [9].

3,2 Definition. A structure function f:Sn S is said to be

coherent (weakly coherent) if it satisfies conditions (i)r , (ii)"  ((ii)'),

and (iii).

We denote by GI class (G2 class) the class of coherent (weakly coherent)

structures. It is easy to see that BW class c BPS class c GI class c G2

class. Later in this section we demonstrate by examples that these classes

are successively larger.

I
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3.3 Remark. Conditions (ii and (ii)' describe successively weaker forms

of relevancy of each component of the system to each level of performance.

Condition (ii)... however, indicates only that the structure function is

not constant in any of its arguments. In ;he binary case, the three con-

ditions are equivalent.

In a recent paper by Natvig [13], the author introduces two classes of

multistate systems called type 1 class and type 2 class (hereafter referred

to as NI class and N2 class respectively). The author introduces the fol-

lowing relevancy axiom which is weaker than (ii) but stronger than (ii):

(ii).... For any component i and state jkl, there exists a vector

(-isx) such that *(ji,x)>j and *((J-l)i,x) < j-1.

We now define the NI class.

3.4 Definition. The N1 class is the class of all structure functions

which satisfy conditions (i)' , (ii).. , and (iiir .

Note that condition (ii)" expresses the relevancy of each component

i of the system to each state j z 1. Obviously EPS class c NI class c

GI class

The binary coherent structure is then used by Natvig [131 to introduce

yet another class of multistate systems.

3.5 Definition. The N2 class is the class of all structure functions

M

f:Sn S which has the representation *(x) f .(I (x)), where
j=l

z f k .2 z f. are M binary coherent functions and I.(x) is the

binary vector whose ith component is I iff xi>j, j=l,....M; i-l,...,n.
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Note that when I= M we get precisely the BW class. In general

the N2 class is larger than the BW class. For instancewhen n=2, M=2

the BW class has 2 systems and the N2 class has 3 systems. In fact Natvig

(131 shows that for n=2 (n=3) there are M+l

([9 + (M- 1)30 + IM1) 4 6 * (M+;) 3 3 + (M41)9]J systems in the N2 class.

3.6 Remark. It can be easily shown that the N2 class c NI class. However,

no containment holds in general between the N2 class and the EPS class. We

demonstrate this fact by examples which are given later in this section.

Another class of multistate structures is introduced by Borges and

Rodrigues [5] which they call the A*-type class (hereafter referred to as

BR class).

3.7 Definition. A structure function O:Sn -> S belongs to the BR class

iff it satisfies the following conditions:

(1) * is increasing

(2) ({ 0 ,M)n) = (0,M).

(3) For every i, there exists a vector (-i,x) such that

*(O.,x) ' *(M.,x)
Wi1 1-(M.X

Note that condition (3) is the weak relevancy axiom due to Griffith [9].

Obviously BW class c BR class. The examples given later in this section

illustrate that some other containments are not possible in general. Later

in this section we present the main result in Borges and Rodrigues [5], which

is a characterizing property for the BW class within the BR class.

Finally, Block and Savits [4] introduce a large class of multistate

structures generalizing the class of binary structures called monotone
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structures. The authors call their class the class of monotone multistate

systems (denoted by MMS) We refer to this class as the BS class.

3.8 Definition. A structure function *:Sn--> S belongs to the BS

class iff it satisfies the following conditions:

(a) * is increasing

(b) 4(0)=O. *(M=M.

Obviously G2 class c BS class and BR class c BS class.

3.9 Remark. It should be noted that condition (b) of Definition 3.8 implies

that the set of weakly relevant components is not empty. Thus if in addition

to (a) and (b) we require *(k)wk, kul,...,M-l, we get a structure function

of order O<j<n which belongs to the G2 class.

We summarize general containments that exist among the various classes

introduced:

BW class c (EPS class)n(N2 class)n(BR class),

(EPS class)u(N2 class) c NI class c GI class c G2 class c BS class.

We now illustrate by examples that some other containments among these

classes are not possible in general.

3.10 Example. Let n=2, M=2. Let *, be the binary parallel system and

4 the binary series system. Let *(x)=$l(1l(X)) + 42 (12(x)). Then

e N2 class, but * E BPS class. Note that in this case

(N2 class)n(EPS class)=(BW class)

3.11 Example. Let n=2, M=2. Define # by *(0,0)u=(l,0)=#(0,l)=0, *(1,1)=1,

*(2,2)-4(1,2)-#(2,1)-4(2,0)&4(0,2),2. Then # e EPS class but * d N2 class.
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3.12 Example. Let n=2, 14=2. Define f by 4(0,0)=(1,0)=#(0,l)-0,

*(ll)=0(2,1)=*C2,0)=*(0,2)=,*(1,2)=*(2,2). Then # e GI class but

* NI class.

3.13 Example. Let n=2, M=2. Define f by *(0,0)=u(,0)=0,

*(0,1)=*(1,l)u*(l,2)*C(O,2)=l, *(2,0)=*(2,1)=*(2,2)=2. Then * G2 class

but * d Gl class.

3.14 Example. Let * be defined as in Example 3.10. Then c c N2 class

but * , BR class.

3.15 Example. Let n=2, M=2. Define * by *(0,O)= (I,O)=(0,1)=0,

4(I,I)=*(2,0)=*(0,2)=I, O(2,2)=$(l,2)=#(2,l)=2. Then 0 e EPS class but

* BR class.

3.16 Example. Let n=2, M=2. Define f by *(0,0)=*(l,O)=f(0,l)=*(l,l)=0,

f(l,2)=*(2,l)=*(2,0)-f(2,2)=2. Then * e BR class, but * (EPS class)u

(N2 class).

Some examples above are taken from references cited in this paper while

some are new.

The definition given by Ross [15] for a multistate system is less

structured than any of the definitions presented above. The state space

is taken to be [0,) and the structure function * is any increasing

function from [0,_) n  into [0,.). Ross [15] does not attempt to

investigate structural properties of his model; rather, he concentrates on

the stochastic properties of his model when observed either at a fixed point

in time or when observed at different points in time (dynamic models).

Results of this type will be surveyed in the next two sections.
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In the remainder of this section we present various structural prop-

erties of the multistate classes discussed above. These properties extend

well known results in the binary case [1, Ch. 11 to the more general multi-

state classes.

The following theorem in EPS [6] gives simple bounds on the performance

of any structure function in their class.

3.17 Theorem. Let € be a structure function in the EPS class of order n.

Then

min x. : € (x) < max x. (3.3)
15i!n 1 - lisn (

Theorem 3.17 states that a parallel system yields the best performance

in the EPS class and a series system yields the worst. Using this theorem,

EPS [6] establish probabilistic bounds on system reliability. To establish

Theorem 3.17, we need only conditions (i)' and (iii)' and therefore the result

is true for the G2 class also.

The following lemma in EPS [6] gives a decomposition identity useful in

carrying out inductive proofs. It holds for any multistate structure.

3.18 Lemma. The following identity holds for any n-component structure

function €:

M
*(x) = O *(Jx)I x for i = 1,...,n, (3.4)

where

i1 if x. = j

I[xi-j] ow
0 O.W.

As in the binary case, EPS [6], define a dual structure for each

multistate structure.
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3.19 Definition. Let * be the structure function of a multistate system.

The dual structure function * is given by:

D () a M - #(M - X1,...,M - xn). (3.S)

It is shown by EPS [6] and Griffith [9] that their classes are closed

under the formation of dual structures. It can be shown that all the multi-

state classes that have been discussed in the present survey possess the same

property.

Design engineers have used the well known principle that redundancy at

the component level is preferable to redundancy at the system level. This

principle is translated by BPS [6] into mathematical form in (i) of the fol-

lowing theorem; (ii) is a dual result. Extension of these results to the

class of coherent structures is developed by Griffith [9].

3.20 Theorem. Let # be a structure function in the EPS class.

Then

(i) *(xvr) > *(x) V CY)

(ii) *(XA%) : O(x) A #Q).

Equality holds in (i) ((ii)) for all x and y iff the system is parallel

(series).

Parts (i) and (ii) of Theorem 3.20 are also proved by Barlow and Wu [2].

3.21 Remark. It should be noted that parts (i) and (ii) of Theorem 3.20

are true for any increasing structure function. The only non-trivial fa-ct

of the theorem is that equality in (i) ((ii)) for all x and y implies

the system is parallel (series). To establish this implication, BPS [6]
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use the relevancy axiom (ii)', but then Griffith [91 shows that the weaker

axiom (ii) - is sufficient. The structure function in Example 3.13 is used

by Griffith [9] to show that (iir " is not sufficient to establish such an

implication.

In binary coherent structures the concepts of minimal path vectors and

minimal cut vectors play a crucial role. In the theory of multistate struc-

tures, generalizations of these concepts have been sought by the various

authors. The first analogue of such concepts is defined by EPS (6] in the

following:

*. 3.22 Definition. A vector x is said to be a connection vector to level

j if O(x) J, j u Ol,...,m.

3.23 Definition. A vector x is said to be an upper critical connection

* vector to level j if *(x = j and y < x imply 4(y) < j, j =

A lower critical connection vector to level j can be defined in a

dual manner, j a O,...,M-l.

The existence of such critical connection vectors is guaranteed by the

conditions of Definition 3.1. For j-l,...,M, let I,..., 4 be the upper
j

critical connection vectors to level j, where 4= r I n..

The following theorem by EPS [6] expresses the state of any structure f/mction

in the EPS class using its upper critical connection vectors.

3.24 Theorem. Let # be a structure function in the EPS class. Let

is,...,*ybe its upper critical connection vectors to level j, Jul...,M.

j - t
Then * ( j i ff x Z y for some j s t - M and some I s t s nt.

The above theorem is utilized by EPS [6] to establish bounds on the system

performance distribution, as will be shown in the next section.
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3.25 Remark. In the paper by Griffith [9] it is asserted that #(x) > j

iff x 2t y for some 1 < 1 < n . This assertion is unfortunately incorrect.

A second analogue to the concepts of min path (cut) vectors closely

related to those of EPS [6] is introduced by Block and Savits [41, Borges

and Rodrigues (5], and Natvig [13]. This concept is defined in the following:

3.26 Definition. A vector x is called an uper vector for level joE a

structure function * if *(x)aj. It is called critical uper vector for

level j if in addition y<x implies *(Q)<j, jul,...,M.

A lower (critical lower) vector for level j can be similarly defined.

The existence of such vectors for the classes of multistate structures

introduced by these authors is guaranteed by the axioms defining their

classes.

Let * be a structure function of a multistate system. Let Cis Uj be

the sets of upper critical connection vectors to level j and critical upper

vectors for level J, respectively, j=l,...,M. Then obviously C cU.,

M

U.C UC , Jul,...,M. Also, the following theorem is immediate.

3.27 Theorem. Let f be a structure function that belongs to the BS class.

Then *(x)>j iff x2 for some ycj, Jul,...,M.

This is utilized by Block and Savits [4] and Natvig 113] to establish

bounds on the system performance distribution (clearly Natvig (13] states

this theorem for the N1 class). This theorem is utilized by Block and Savits

[4] to give a max min representation for the structure functions in the BS

class. A characterization for the BW class within the BS class in terms of

Sj l,..., , is obtained by Block and Savits [4]. Another characterization

for the BW class within the BR class is obtained by Borges and Rodrigues (5]
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using the concept of critical upper vectors. We first present the charac-

terization due to Borges and Rodrigues [S].

3.28 Theorem. Let # be a structure function that belongs to the BR class.

Then #a BW class iff for each x such that *(x)2j there exists a vector

z{0,j) n  satisfying zix and *(zaj, Jal.,.M.

The property stated in Theorem 3.28 is called by Borges and Rodrigues

[S] property P. For n=2, M-2 the authors indicate that property P charac-

terizes the BW class within the EPS class. However an example is presented

in Borges and Rodrigues [S] to show that for other values of n,M, property

P does not characterize the BW class within the EPS class.

The following representation of a structure function #c BS class is

inmediate from Theorem 3.27:

*()u Jmax min I (x) (3.6)
tU, lsisn Yi

where I (Y=Vl if x iy i  and Iyi (x)uO otherwise.

To formulate the expression in (3.6) in a more set-theoretic form,

Block and Savits (4] introduce the following:

For every xcUJ, let U (x =(Ci,xt): xiO), jul,...,M. For every x

let iGx be the M'n binary vector defined by a(x) (aijx). ial...,n;

Jl,...,), where Gii(D)=l iff xikj. The following theorem due to

Block and Savits [4] converts the representation in (3.6) to a set-theoretic

form.

3.29 Theorem. Let * be a structure function in the BS class. Then

M
a max min i~)

Jul yu (i,k)aUJ(Z
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A similar representation using critical lower vectors is also obtained

by Block and Savits [4].

The following theorem due to Block and Savits [4] gives a characteriza-

tion for the BW class within the BS class.

3.20 Theorem. Let * be a structure function in the BS class. Then

*e BW class iff UjUI, j~ l...,M.

3.21 Remark. A careful inspection of the concepts of critical upper vectors

for level j and upper critical connection vectors to level j for a structure

function * in the BW class shows that the two concepts coincide. Also for

such structure functions, the vector y a (yl,...,yn) is an upper critical

connection vector to level j iff y, = j for Wt, yi a 0 for UcP , where

P. is one of the minimal path sets associated with *.

In light of this remark Theorem 3,20 is immediate.

Decomposition of a binary coherent system into modules is useful in

analyzing complex systems. Such a modular decomposition can be easily

extended to a multistate model. A question raised and answered by Griffith

[91 is whether a "relevant" component within a "relevant" module is "relevant"

in the system. The answer is yes if relevancy is defined in terms of condi-

tions (iiy, (iiA. However an example is given by Griffith [9) to show

that this is not necesaarily the case for weak relevancy (condition (iiY').
Simply define "'(xX 2,X 3) = f(#(xlx2),x ) where * is the structure

function in Example 3.13.

A deterministic measure of the importance of component i in a binary

system is given by - Note that
l (-') . No e t a
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(li~X) - (0,x) = 1 iff component i is crucial to the functioning of

the system when the states of the remaining components are described by

(i ,x). Various generalizations of such a concept in the multistate setting

are possible. In the next section some of these generalizations are obtained

as special cases of probabilistic measures of importance introduced by the

various authors.

4. Stochastic Properties of Multistate Systems.

Having discussed some structural aspects of the various multistate

systems, we now turn to their probabilistic aspects. In this section we

survey important relationships between the stochastic performance of a

system in a given class and the stochastic performance of its components,

which are often assumed to be independent, but in some cases assumed to be

only associated (see [1, Ch. 2] for a definition and basic properties).

Let Xi denote the random state of component i, i - 1,...,n. Let

X = (XI...,X n) be the random vector representing the states of components

1,...,n. Then *(X) is the random variable representing the state of the

system. In the models described by Barlow and Wu [2], Block and Savits [41,

EPS [6], Griffith [91, and Natvig [13], the random variables XI,...,# n

and #(q) assume their values in the state space S = {0,1,...,M}, with

P[Xi" J] Pij P[4IX) - api (4.1)

P[Xi J a P i(j) , P[O(X) ] =P

for j a O,1,...,M and i = 1,...,n. P.) (P(.)) represents the perform-

ance distribution of component i (system). Clearly,

pi . Pik P i( . 1,kn
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for i S i,....n. Smilar relationships hold for P. Let h E((X_));

when the components are assumed to be independent, we may express h as

follows: h =_ h(Pl(O),...,Pn(-)) since h is a function of P

Alternatively, we may express h as follows: h - h(P 1,...,Pn) , where

Pi = NPiO"'"Pim) for i = 1,...,n. In either case, EPS [6] call h the

performance function of the system.

The next lemma due to EPS (6] is obtained by a straightforward con-

ditioning argument. The lenna expresses the performance function of a

system of n components in terms of performance functions of systems of

* n-l components. Such a decomposition is useful in deriving properties of

h and in carrying out a proof by induction. It should be noted that the

lemm is true for any structure function *.

4.1 Lemma. The following identity holds for h:

M
h(Pl, Pijh(iPl"".Pn)' i = 1,...,n, (4.2)

where h(ji,pI,...,n) E (Ji,.

The following theorem due to EPS [6] shows that h is strictly increas-

ing in each pij j 0. This property generalizes the well known property

of h in the binary case.

4.2 Theorem. Let h(Pl,... ,n) be the performance function of a system #e

EPS class. Let 0 < Pij < 1 for i = l,...,n; j - O,l,...,M. Then

h(p,,...,4n) is strictly increasing in P.jj i u l,...,n; j ,...,M.

It should be noted that this theorem holds for the performance function

of a multistate structure f in the Gl class.

Properties of h as a function of P are also investi-
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gated by Barlow and Wu [2], EPS [6], Griffith [9], and Natvig [13]. The

following theorem due to PS (6] shows that in their class the function

h(P 1 (-),...,Pn (.)) is increasing with respect to stochastic ordering. A

similar result is proved by Barlow and Wu [2] for their subclass using a

different proof. The sam property is proved by Griffith [9] and Ross [15]

for their models. In fact the only property needed to establish the result

is the monotonicity of the multistate structure *.

4.3 Theorem. Let Pi(.) and P(.) be two performance distributions for

component i. i-l,...,n. Assume pi(j ) k p(j) for j=O,...,M; i=l,...,n.

Let PC) CF(-)) be the corresponding system performance distribution. Then

(i) PCj) 2 P*(j) for juO,l,...,M,
(4.3)(ii) h(P (),..,Pn( ) h(P'(-)...,P(-)).

Using Theorem 3.17, EPS [6] obtain the following simple bounds on P(.)

and h in terms of Pl(-),...,Pn(.):

n n
n Pi ) p(j) S I - H Vim,i=1 i=l1

(4.4)
M n M n

where aiO) - 1 - P i(J).

The inequalities in (4.4) are easily extendable to the case where the

components are associated. In the papers by Block and Savits [4] and

Natvig [13], such extensions are presented.

The concept of upper connection critical vectors introduced by EPS [6]

i beis exploited to obtain further bounds on P(') and h. Let yS ,...,lYn b

en
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the upper critical connection Vectors to level j. j 1, l... M. Let A

denote the event [I a 4i]. r - l....n. By Theorem 3.24,

M
P[OUX kj]P (U U At)

tu3 "I1 r

Now using the well known inclusion-exclusion principle the authors establish

upper and lower bounds on P[O(X) 2! j]. Note that

n
P (A3. u P[ 'k y] 11f P[X. 2!Y Y 1  for l rs~nj and j * .. twhere

i= 1 i

M M
irX k Y. = Ipit. Also since h . P[O(x) k j], bounds on h can

also be obtained.

The concepts of critical upper (lover) vectors to level 3 ... M

have been exploited by Block and Savits [4] and Natvig [13] to establish

bounds on P(-) and h. For example Natvig [13] proves the following:

4.4 Theorem. Let # be a multistate structure in the NI class. Let

be critical upper vectors to level j, j = ... Let

Cj (4> i 4  0), r - l....,n.; j l.,M Assume the components

are associated. Then

PWX) ! J1 s I [Il-P( n . (X~ k

rn1 i~c, i 4)

Similar bounds are obtained by Block and Savits [4] using their repre-

sentation in Theorem 3.29.

An interesting generalization of the Moore-Shannon Theorem [1, Chap. 2,

Theorem 5.4] is obtained by Barlow and Wu [2]. In view of (3.2), it is

easily verified that
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P[*(x) > ki E V- (_3) h(15), (4.S)

M
where j u (q 1  .j.qn) and q Pik' i - 1,...,n.

Recall that Moore and Shannon show that if all components have the same

reliability p, then either h(p) a p or h(p) : p for all 0 5 p 5 1,

or there exists 0 < Po < 1 such that h(p) S p for o pS p op while

h(p) a p for 1 a p > p0 . Barlow and Wu (2] give a natural generalization

of this result to the multistate case with respect to stochastic ordering.

4.5 Theorem. Let = = (ao,...,DaM) for i = 1,...,n. Assume

h'(p) = po (0 < po < 1) Let '-= (l-P 0 9 0,...,0,po). Then

st st
a a* implies that p f 4_,

st st
a 41.. implies that p Z a,

where p = (po p...,pM), Pi = P[*(X) a il, i = 0,...,M.

Note that (4.5) is central to the proof of this theorem.

In the model proposed by Ross [15], Xi, i - l,...,n, and $(X) are

nonnegative random variables with distribution functions Fi, i a ,...,n,

and F respect.vely. The function r(FI,...,Fn) is defined by

Using an extension of Lema 2.3, Chap. 4, of Barlow and Proschan [1],

Ross (IS] proves the following:

4.6 Theorem. If # is a binary increasing function then

ror rll 0 1 .. (4.6)

for a a1 1.
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As a consequence of this theorem, Ross [15] proves:

4.7 Corollary. Let XlI...,X n be independent IFRA random variables. Then

n
(a) IX i is IFRA,

n n(b) P[ ii X i > a~]a(P[ (11X i > all'a , 0 a 1

jul jul

Observe that part (a) of Corollary 4.7 represents the well known property

of the closure of the IFRA distribution under the convolution operation.

'4 Finally, several authors suggest generalizations of the concept of the

reliablilty Importance of component i which is defined in the binary case

by I(i) a P[#(OiX) < *(li,X)]. The following importance measures are due

to Barlow and Wu [21, Block and Savits [4], and Natvig [13]:

11M

8~ ~ W2 ()=p; ((0-l1i.9_ < Oi.9_)]

I . (i) a p[*(01,_ - #(Mi..!)].

Note that for various classes one must choose the appropriate measure. Taking

P[Xi=j] = *-- j O...,M, the above measures are converted to structural

importance measures of the various components. In Griffith [9], the impor-

~ ~mf omponent I is measured by a vector. Let a > aM 1 a ... a a° = 0

be utilities associated with the various levels of performance of the system.

W M
The expected utility of the system is . ai P[,(X_ a i] a i bi P[(X) a i]

4 1l iul
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where b1 I a, bk - a k - , k = 2,...,M. Define (i) =

M
P[ i, ] - P[k(-l)i,) • j], i, J, z ? I. Let Iz(i) I j b. I (i),

Jal
Sa 1, ...,m. Let 1(i) = (li),...,.IM(i)), then the vector 1(i) is called

by Griffith [9] the importance vector of component i. Relationships between

the expected utility of the system and the importance vectors of the compo-

nents are presented by Griffith [9]. For example he shows that if the

expected utility is viewed as a function of the i h component distribution,

keeping all the other marginals fixed for j i i, then

I(i) a gradu P ), i -,.n

where P. - (Pil ' Pim4) and Pi * - P[Xi k a], i M l,...,n; L a 1,..., .

5. Dynamic Models for Multistate Coherent Systems.

In the binary reliability models, the length of time during which a

component or system functions is called the lifelength of the component or

system; these lifelengths are nonnegative random variables. Classes of

lifelengtn distributions based on various notions of aging have been intro-

duced and studied. See, e.g., [1]. Two of the important classes of life

4 distributions are the increasing failure rate average (IFRA) class and the

new better than used (NBU) class. Closure of these classes under basic

reliability operations, such as convolution of distributions and formation

of coherent syscems, have been established. The counterparts of these con-

cepts in the multistate case have been first investigated by Barlow and Wu

(2], BPS [6], and Ross (IS]. More recently, Block and Savits [3] and

EI-Neweihi [8] introduced general multivariate versions of these concepts.

r
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Let (Xi(t),t k 0) denote the decreasing and right continuous

stochastic process representing the state of component i at time to

where t ranges over the nonnegative real numbers for i = 1,... ,n. The

processes (Xit), t k 0), i - l,...,n, are assumed to be mutually inde-

pendent. The stochastic process {4(X(t)), t a 0) is also decreasing and

right continuous and represents the corresponding system state as time

varies, where X(t) a (Xlt),...xnct)), a 0.

In the model of Barlow and Nu [2] the state space is {0,l,...M).
i/t

Let us call (J,J I,...,M) the "good" states. Assume that [PCXi(t) a j)]

is decreasing in t k 0 for fixed j, i a l,...,n. It is easily verified

I/t
that [P(O(X(t)) k j) is decreasing in t k 0 for fixed J. Thus the

above result states that if the length of time spent by each component in

the "good" states is an IlRM random variable, then the corresponding length

of time spent by the multistate system in the "good" states is also an IFRA

random variable. In the binary case this represents the so-called IFRA

closure (under formation of binary coherent system) theorem.

The following definition is due to Ross [15].

5.1 Definition. The stochastic process (X(t), t Z 0) is said to be an

IFRA process if Ta a inf(t:X(t) S a) is an IFRA random variable for every

a a 0.

Having introduced this definition, Ross [15] then proves the following

generalized IFRA closure theorem.

5.2 Theorem. Let (Xi(t),t a 0), i = l,...,n, be independent IFRA processes

and # a multistate structure function. Then {*(X(t)), t ? 0) is an IFRA

process.
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The crucial tool in proving this theorem is Theorem 4.6.

Ross [iS] also defines an NBU process and proves a generalized NBU

closure theorem (under formation of multistate structures).

A different definition of an NBU process is given by EPS [6], and then

a simple characterization for this NBU process is derived. Using their

characterization, they give a simple proof of a generalized NBU closure

theorem. The EPS definition of an NBU process is as follows:

S.3 Definition. The stochastic process {Xi(t),t > 0) is an NBU process

if Ti. = inf(t:X.it) j is an NBU random variable for j = 0,... ,M and

i = n.

Recall that the state space for the EPS [6] model is the set (0,...,M).

The following lemma gives a simple characterization of an NBU process.

5.4 Lemma. The stochastic process (X.(t), t a 0) is NBU if and only if
1

for all s a 0, t > 0,

st

where XCs) and X(t) are two independent random variables having the
1 1.

same distributions as Ci(s), Xi(t) respectively.

Using their Lemma S.1, EPS [6], prove the following generalized NBU

closure theorem.

5.5 Theorem. Let # be a structure function in the EPS class having n

components and {X.(t), t 1 0) be the i=h  component performance process,

i - l,...,n. Let {Xi(t), t k 0), i = 1,...,n, be independent NBU processes.

Then ({(X(t), t a 0) is an NBU stochastic process.
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The various generalizations that have been presented so far in this

section have been obtained under the assumption that the components of the

system are independent. However in many real life situations the components

are subjected to common stresses which make them stochastically dependent.

in recent papers by Block and Savits (3] and E1-Neweihi [8], the authors

introduce multivariate classes of stochastic processes that describe the

joint performance of the n component3 of a system without requiring

statistical independence of components.

Now lot (X(t) E (Xl(t),...,Xn (t), t > 0) be a vector-valued stochas-

tic process. Assume that X(t) is nonnegative, decreasing and right-

continuous.

The following definition is due to Block and Savits (3].

5.6 Definition. {X(t), t • 0) is said to be a vector-valued IFRA process

n
if and only if for every upper open set U c R , the random variable

TU = inf {t: X(t) i U)

is IFRA.

Block and Savits prove the following closure theorem:

5.7 Theorem. If is a multistate monotone structure function and

{X(t), t Z 0) is an IFRA process, then {*(X(t)), t a 0) is an IFRA

process.

The following definition is due to El-Neweihi [8].

5.8 Definition. The vector-valued stochastic process (X(t), t a 0)

is said to be an MtBU process if and only if the random variable

T C inf {t: X(t) C)
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is NWU for every lower closed set C c Re.

The following generalized NBU closure theorem is then proved by

El-Neweihi (8].

5.9 Theorem. Let {X(t)D t 0) be an IMtBU process. Let * be a

decreasing, left-continuous, nonnegative function. Then {(X((t)), t 2: 0)

is an NBU process.
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